
International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 287
Volume 1, Issue 4, December 2010

Intelligent Messaging Service in an

InfoStation-based University Network
Liam Merwick, Ivan Ganchev, M´airt´ın O‟Droma

Telecommunications Research Centre.

University of Limerick, Ireland

Abstract: This paper shows how a communication

infrastructure consisting of mobile devices, InfoStations

and an intelligent gateway can be combined to create a

messaging system for a campus sized area. It allows for fast

and efficient delivery of messages to a group of users

through the provision of two-tier ad-dress space

architecture. A particularly novel part is the creation of an

intelligent central message processing agent which decides

which device, and in what format, the message should be

forwarded to base on a user‟s preferences and the presence

(or not) of their registered devices on the network. The

benefit of this „Intelligent Assistant‟ is the delivery of

messages to a user on the device they are most likely to be

able to access at any moment in time and thus deliver

messages in a timely manner. A system was successfully

prototyped which could deliver messages in SMS and email

format and was designed so that further message formats

could easily be integrated.

Keywords: mobile messaging, InfoStation, Blue-tooth,

SMS, two-tier address space

1. Introduction

In recent years communications technology has

advanced considerably and people own multiple

communication devices (mobile SMS/MMS, PDA,

desk-top computer, laptop) and have many means of

being contacted (email, phone, Instant Messaging).

Often, when trying to get a message to a person, there

is no way of knowing the best way of notifying

him/her in a timely manner - he/she may be away

from their desk or have their phone switched off.

When sending a message, some protocols allow for

the sender to re-quest to be notified when the

message is received or read [Faj98], but the sender is

still required to decide which of the recipient‟s

devices/addresses to send the message to (possibly

without any knowledge of the recipient‟s schedule or

location). It is of limited benefit to either party if the

message is sent to a device that the user has no access

to at that time.

The aim of our research was to build a system

which allows a person to send a message to another

user in the „best‟ possible way, i.e. the messaging

system can dynamically decide to route that message

to the other person based on that person‟s current

location, contact preferences and other criteria (e.g.

urgency or price the user is willing to pay). The end

result should be that the recipient(s) should get the

message in a more timely manner and in a way most

suited to them as they will have more control over

how and where the messages are received.

The major system components (Fig. 1) are an

application that runs on the mobile device

(MobileApp), one or more InfoStations through

which the mobile devices connect to the messaging

system, a central processing application

(MessageRedirector) and a web interface which

allows a user to update his/her details and addresses

(ContactApp).

The system prototype was built upon the service-

orientated network architecture described in [Iva06],

[Iva07], which is used to deliver lectures, tutorials

and tests on a University campus network. However

our prototype has implemented software which has a

MessageRedirector (cf. Section 4.5) as the central

processing component instead of the InfoStation

Centre in that architecture.

The remainder of the paper is organised as

follows. In Section 2, we introduce some typical use

cases of an intelligent messaging system. Section 3

describes related work in this field. The architecture

of the messaging system is defined in Section 4 and

how it is implemented in Section 5. Finally, we

describe our conclusions and future work in Section

6.

2. Typical Use Cases

The operation of the messaging system can be

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 288
Volume 1, Issue 4, December 2010

best described by some typical examples of its use.

2.1. Sending a Message

While parking his car at the university car-park,

a lecturer receives an urgent message about a meeting

rescheduled for the same day. He notices that the

meeting will be held in the same time as a lecture.

The lecturer urgently needs to broadcast a message

notification to the entire student class about

canceling/postponing the lecture. The lecturer types

and sends the message on his mobile device which is

connected to the nearest base station of the

messaging system (e.g. deployed at the car park). The

messaging system then decides what is the most

appropriate, quickest and cheapest way of delivering

this message to each student in the class according to

his current individual location (and device in

possession) specified in his profile. All registered

users (lecturers and students) have profiles

containing, among other things, information about

the best way of forwarding urgent messages to them

at any particular moment, e.g. by SMS/MMS, email,

fax, voice mail or other-wise.

Figure 1: Messaging System Components

2.2. Changing a User’s Preferred Contact

Address

A student studying in the library or a professor

giving a lecture, to avoid distractions, wishes to

receive messages via email rather than via SMS.

Similarly, a lecturer working at his computer in his

office may prefer to handle incoming messages via

email. The user logs into the web interface.

Following a successful login, the user‟s details,

including a list of addresses, are displayed. The user

raises the priority value in the field associated with

his preferred email address so that it is the highest

priority address. The web interface validates the

details before inserting them into the database. The

Intelligent Assistant that is part of the Message

Redirector will route any messages received to the

user‟s email account until the priorities are re-

adjusted.

2.3. Adding an address to a profile

The user logs into the web interface which interacts

with the database back-end containing the users‟

details and addresses. Following a successful login,

the user‟s details are displayed including a list of

addresses. The user selects the option to add a new

address and fills in the requested details. The web

interface validates the details before inserting them

into the database.

3. Related Work

There are numerous software applications

available which allow for communications via mobile

devices. These applications are provided by both the

mobile carriers (e.g. standard applications such as

SMS and MMS) as well as open source (e.g.

numerous down-loadable Java applets) and

proprietary (e.g. Nokia Presence) offerings which

build upon the platforms provided by the carriers

(e.g. Brew, Vodafone Live!) and device

manufacturers (e.g. Nokia‟s Series 40/60).

The research undertaken, and described in this

paper, focuses on creating new infrastructure to route

messages and where possible leverages existing

applications to actually send and receive messages.

Many individuals and organisations have put

considerable effort into providing tools to

send/receive message for the various standard

formats (and in many cases multiple high quality

applications exist for each message format – each

focusing on different usage scenarios). Enabling

users to select from pre-existing applications allows

users to choose the application that best suits their

needs and allows us to focus on extending the

capabilities of the messaging system instead of re-

implementing the clients.

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 289
Volume 1, Issue 4, December 2010

3.1. State Of The Art

3.1.1. A Unified Messaging System

One instance of a unified messaging system is

GlobalCom [Bar02], which is a suite of web-based

tools that can be used to send messages in various

formats. They used a single message-independent

for-mat to store the messages and implemented their

own clients (such as mobile text, email, chatrooms,

etc.) which access the message store database and

convert the messages to the standard format (SMS,

IMAP, etc.) for display and transmission [HBN03].

By implementing the system in this way, GlobalCom

allows the user to choose what device and application

to use to access their messages (as opposed to the

system trying to decide the most likely client being

used by them at that moment in time). However, a

drawback to the system is that it increases the number

of applications/clients that a user needs to operate as

they will still have to interact with people outside of

this closed messaging system and thus continue to

have to use their regular email/chat clients, etc.

3.1.2. A Proxy-Based Platform

The iMobile EE [CHJ+03] project aims to hide

the complexity of multiple devices and content

sources by acting as a message gateway that allows

mobile devices using various protocols on different

ac-cess networks to relay messages to each other.

This is a continuation of the original iMobile

[RCCC01] project and as well as implementing a

message proxy, it seeks to provide proxies for

information such as stock quotes, weather and flight

information. The iMobile research approaches the

messaging problem in a similar way to our project,

where the processing of messages is carried out on a

single server which in turn routes the messages to the

other clients. iMobile allows devices to connect to the

iMobile server
1
 over the GSM network. This differs

from our re-search, which implemented Bluetooth

InfoStations to allow inter device-networking within

the campus without depending on commercial

providers (part of the project‟s remit was to be able to

minimise the cost of sending the messages by

1
 the equivalent of the MessageRedirector in our project

utilising the University network or creating new

communications infrastructure over which the

operation costs could be controlled).

3.2. Innovations

Where our research differs from many of the

other projects in this field is in the logic which

decides how to deliver the message to the recipient.

Other applications have focused on improving the

connection between the mobile devices such as

improved bandwidth, latency, etc. This has been

termed “Always Best Connected (ABC)” [Mat06]

and the message is transmitted in a single format (e.g.

SMS).

Rather than introduce new message formats or

new applications for communicating, this research

sought to build upon existing applications in an

attempt to create a universal messaging system. This

allows the user to continue using their messaging

applications of choice and to hide the translation

between the message formats in the messaging

system infrastructure. The next section describes the

architecture of the messaging system and gives a

high-level view of how all the components interact

(the actual implementation details are discussed in

Section 5).

4. System Architecture

This section describes the overall architecture of

the messaging system and how each part of the

system interacts with all the other components.

A graphical overview of how the system

components interact is given in Fig. 2 and by

following the arrows in the diagram, some of the

possible message paths though the system can be

traced. A number of use cases, given in Section 2,

describe how a user would interact with the system.

4.1. Two-Tier Address Space

One of the central innovations in this project is

the use of two-tier address space architecture. Each

user in the messaging system is identified by a unique

userID (more details in Section 4.2). This userID can

be considered a „virtual address‟ which the

messaging system maps to a specific contact address

(„real address‟) in the list of contact addresses that the

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 290
Volume 1, Issue 4, December 2010

recipient has provided.

An analogy for this dynamic one-to-many address

translation would be a demultiplexer (a digital

switching device that has one input and several out-

puts). The sender uses the userID to identify the

recipient; the messaging system demultiplexes the

userID input and outputs the required contact ad-

dress (the Intelligent Assistant provides the „control

bits‟ to select the contact address). A graphical

representation of the operation is depicted in Fig. 3.

Figure 2: Messaging System Components

Benefits of this address space architecture include:

 The recipient gets the message delivered to

the most suitable address/device.

 The sender need only maintain a single

contact address for the recipient.

 If the recipient does not want to be

disturbed, they can forward messages to an

address that won‟t result in an interruption.

 The recipient can add new contact addresses

without having to inform all their contacts.

Once added to the ContactApp, the new

address will be used if it meets the criteria

decided by the Intelligent Assistant.

Figure 3: Two-tier Address Space - an address

demultiplexer

4.2. Database

Each user of the messaging system has a unique

identifier in the format of an RFC2822 [Res01]

address (i.e. like the format of email addresses) with

a userID part and a domain part (userid@domain).

Each user profile has one or more addresses

associated with it. Each address entry consists of

three pieces of information: (1) the contact address

(e.g. email address in the RFC2822 format, mobile

phone number), (2) the type of address (email, SMS,

etc.), and (3) a user assigned priority to allow the user

indicate to the system the ordering of the formats that

they would prefer to receive messages (e.g. via email

rather than via Instant Messaging (IM)). In the

absence of an ordering specified by the user, a default

ordering of the formats is provided by the system,

which favours formats that have a lower cost per

transaction (e.g. send as email rather than SMS,

which would incur a network provider charge).

The user list and address list are stored in a

database accessible to all the infrastructure

components. Each address has a link to the associated

user details via a “foreign key”.

Multiple user profiles can also be grouped in

hierarchies (in the same way email addresses can be

added to mailing lists) so that messages can easily be

sent to multiple users with each one receiving the

message in their preferred format as described in

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 291
Volume 1, Issue 4, December 2010

Section 2.

It is also possible for a user to access the

database via the web interface (c.f. Section 4.6) and

update their profile. The operations supported

include:

 Add/delete contact methods (“addresses”) by

which messages can be sent to the user.

 Disable/enable specific contact methods in the
database.

 Select a default method of contact.

 Set the „priority‟ of an address in order to
give user a hint to the Intelligent Assistant
(c.f. Section 4.5.2) as to which address to select.

4.3. Mobile Application

The mobile application (MobileApp) runs on the

users‟ mobile devices (such as a mobile phone or

PDA). This is what is known as the Mobile Station in

GSM parlance [Sco96], [ETS95]. The application

allows the user to send messages in various standard

formats such as SMS [ETS98] and interfaces with

external messaging systems such as email.

4.3.1 Functionality

The MobileApp provides a message editor which

al-lows a user to compose text messages.

The MobileApp can also save received messages

and has an application-specific AddressBook to store

the userID/domain tuple of contacts (This address

data (userID/domain tuple) is also sent as part of the

message format and the MessageRedirector can

query the database (c.f. Section 4.2) to get the

recipient‟s contact details).

The application on the mobile device controls

when the messages are pushed from the mobile

device and pulled from the InfoStation. It polls the

InfoStation on a regular basis while it is within range

to indicate that it is still within the cell and to check

to see if any messages are available for the user.

4.3.2. Network Access

The messaging system has to be able to cope

with having intermittent network access as the user

will not always be within range of an InfoStation (c.f.

Section 4.4).

Messages which fail to be sent will not be

automatically retried asynchronously (this is a

common design, e.g. [Hos02] and implementations of

the SMS specification [ETS98] do this). If an attempt

to send a message fails for whatever reason, the

sender is given the option of retrying immediately or

saving the message to persistent storage.

Implementing asynchronous retrying would be too

complex, may not be what the user wants, as the

information contained in the message may have a

limited useful lifespan and repeated attempts at

sending the message may use too much power and

reduce the battery life of the mobile device.

The MobileApp only connects to one InfoStation

at a time and there is no ‟hand-off‟ (when a mobile

device switches seamlessly to a new InfoStation,

discussed in [TWB96], [AMH+99], [BB95]). This

will not be an issue as sending a message is an

instantaneous event (unlike a voice call, which can

last for a considerable amount of time, during which

the user may be in motion and move out of range of

the InfoStation to which they were connected).

4.4. InfoStation

The messaging system contains one or more

InfoStations which provide the coverage necessary

for the users to connect with the messaging system.

The requirements for the InfoStation hardware are

ruggedness, reliability and low cost as there could be

quite a number of them in remote and outdoor

locations in a large university campus.

A graphical representation of the major

components in the InfoStation is depicted in Fig. 4

The InfoStation provides a service for the mobile

device to connect and upload any messages that the

user has created and wishes to send to other users of

the messaging system. It then places these messages

on its Send (Message) Queue, which the

MessageRedirector will be watching and will read

from when a new message arrives.

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 292
Volume 1, Issue 4, December 2010

Figure 4: Diagram of the InfoStation internals

The InfoStation also provides a service for the mobile

device to connect and download messages intended

for its user. The InfoStation will have been polling

the Receive (Message) Queue and will down-load

any messages that the MessageRedirector has placed

on it to be routed to a mobile device, which is known

to be connected to that InfoStation. The mobile

device checks on a regular basis and downloads any

messages which are outstanding for that user.

4.5. MessageRedirector

The MessageRedirector (MR) is the central

controlling component of the messaging system and

contains some of the novel innovations referred to in

Section 3.2. Each InfoStation will pass any message

it receives to the MessageRedirector for processing as

can be seen in Fig. 5.

The next subsections describe the major modules

that make up the MessageRedirector and how the

modules work in unison.

Figure 5: Diagram of the MessageRedirector

internals

4.5.1. Overview of operations

When the MessageRedirector receives a message, it

parses the message format and gets the sender‟s and

recipient‟s userIDs as well as decoding the actual

message payload. It provides the recipient‟s userID to

the Intelligent Assistant, which provides the

MessageRedirector with their preferred contact

address. The MessageRedirector then inputs the

sender‟s userID, the recipient‟s contact address and

the message payload to the Message Dispatcher,

which sends the message to the recipient.

4.5.2. Intelligent Assistant

It is the Intelligent Assistant that decides what

ad-dress the message is sent to. The Assistant queries

the database for all the addresses associated with the

recipient‟s userID and decides the user‟s preferred

contact address. The Assistant takes into account

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 293
Volume 1, Issue 4, December 2010

factors such as the urgency of the message, the cost

associated with sending the message to the various

addresses and passes back to the MessageRedirector

the address to which it thinks the message should be

forwarded.

4.5.3. Message Dispatcher

Once the preferred address has been discovered,

the MessageRedirector passes the address and the

mes-sage text to the Message Dispatcher module,

which sends the message in the required format

(which can be decoded from the preferred address).

Knowledge of the various message formats is limited

to the Message Dispatcher module and this

encapsulation of message processing allows the

MessageRedirector itself to have no knowledge of the

message formats. Adding support for a new format is

a matter of plugging in an extra format

implementation to the Message Dispatcher without

having to modify the Mes-sageRedirector itself.

4.5.4. Location Register

The messaging system keeps track of each

user‟s current location using a Location Register,

which contains the address of the InfoStation to

which the user‟s mobile device is connected. The

MessageRedirector uses this information to route the

messages to the correct InfoStation, which in turn

sends the message to the mobile device. This is based

on the same principle as the Home Location Register

(HLR) in GSM [Sco96].

4.6. Web Interface

A web interface to the messaging system is

provided so that users can modify their profile, which

contains their address details.

The messaging system administrator can create

an account/password for a user using the web

interface (called ContactApp).

When the user logs in and is successfully

authenticated, the application displays the user‟s

details and the list of addresses that they have

registered. The user can then add or remove

addresses, modify their details or change the

preferred priority of the addresses (i.e. control the

order in which the MessageRedirector selects an

address in order to forward a message to the user).

4.7. Privacy Issues

Depending on how this project was

implemented, there could have been privacy concerns

with the information that may have been available.

For example, if delivery notification was enabled, it

could be possible to track a user‟s presence

depending on how a message was delivered to them

(e.g. a person would have to be on campus to receive

a Bluetooth message).

This is an issue that other projects have also

encountered: [JPB05] (mentioned in Section 3)

designed a system where the sender provides the

context in which a message should be delivered - the

sender does not have to know the recipient‟s current

presence status or indeed should not find out that

status without their permission. As in this project the

DeDe team also chose not to provide delivery

notifications.

5. Implementation

This section describes how the messaging system

is implemented. Section 5.1 describes the messaging

system components that the user interacts with and

Section 5.2 details the necessary background

components required to distribute the messages.

5.1. User Interface

The user interacts with the messaging system

through the mobile application (MobileApp, running

on the mobile device) and the web interface

(ContactApp, accessible via any web browser).

Typically a user would use the MobileApp more

frequently than the ContactApp; once addresses are

entered in the ContactApp, a user would probably

only log in to change their preferred contact address

once or twice a day whereas they would send and

receive messages via the MobileApp throughout the

day.

5.1.1. Mobile Application

The MobileApp application was written in

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 294
Volume 1, Issue 4, December 2010

the Java programming language which allows it to

run on the wide range of phones and mobile devices

that run J2ME (a specialised virtual machine

specifically for low-powered mobile devices). Details

of the Mobile-App were provided in Section 4.3.

In order to guarantee a usable response and a

satisfactory user experience, the MobileApp User

Inter-face (UI) and the message sending/receiving

components have separate software threads of

execution. This multithreaded approach means that

the user can navigate the application‟s menus while

messages are being sent and received in the

background and there is no risk of the mobile device

display locking up if a user goes out of range of an

InfoStation, etc.

A screenshot of the application‟s main menu

is shown in Fig. 6. This menu shows a list of the

features available in the application, which will be

explained in further sections.

Figure 6: Menu of features of MobileApp

Message Editor

A central component of the MobileApp is

the message editor which enables the user to

compose the messages they wish to send. It utilises

the comprehensive editing features of the J2ME

platform such as predictive text entry.

Address Book

Users of MobileApp can save the addresses

(userid/domain tuples) of people they frequently send

messages to. The address book saves and retrieves

the contact details to/from persistent storage on the

mobile device using the J2ME RecordStore class.

This maintains the address list on the mobile device

across sessions and after the device has been powered

OFF.

Message Stores

Other features of the MobileApp include the

ability to save received and unsent messages (e.g.

messages composed while out of range of an

InfoStation). The messages are also saved to

persistent storage on the mobile device using the

J2ME RecordStore class.

5.1.2. Web Interface

The web interface allows a user to control how

messages are routed to them and is accessible using

any web browser (c.f. Section 4.6).

The web application‟s main requirement is that it

can access the database containing the user details

and that a web server is running on the machine on

which the web application is hosted (the open-source

Apache web server (httpd) is used in this prototype).

The first page presented to the user when they

connect to the website is an authentication page with

an option to jump to a sign-up page, which provides

the opportunity for a user to subscribe to the service,

where they could provide their username and

password, if this is their first time using it.

A screenshot of the key part of the main menu that

is presented to the user upon login is shown in Fig. 7.

The upper part of the page shows the userID of the

person currently logged in and lists the operations

that the user can perform on the addresses. Other

parts of the ContactApp, not shown here, permit

operations such as logging out of the session, adding

a new address or modifying their details.

The upper part of the page shows the user‟s details

and the lower part shows the addresses that are

associated with this user. The addresses are displayed

in the order of the priority that the user assigned to

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 295
Volume 1, Issue 4, December 2010

them. Addresses can be deleted, disabled or modified

from this page.

Figure 7: Menu of features of ContactApp

The format of these addresses was explained in

Section 4.2. In addition to the system not delivering

messages to addresses it knows are not available (e.g.

the device is out of range), the user can also manually

disable an address so that the messaging system does

not consider it when it decides which address to

select.

When a user adds a new address by which they can

be contacted, he/she enters the address, a priority

relative to their other addresses and then selects the

address type from a drop down list of all the address

types supported.

5.2. Prototype System Infrastructure

This section details the implementation of the

infrastructure used by the messaging system. The

user does not directly interface with these

components but they are essential to the operation of

the system. The infrastructure is made up of the

MessageRedirector and InfoStation applications

provided by this project along with externally

provided supporting applications such as the Message

Queue.

5.2.1. InfoStation

In the prototype implementation for this project

the InfoStation Java application runs on basic PC

hard-ware but when deployed in a production

messaging system in a University, a low cost

ruggedised system could be built and used. A USB

dongle was added to the PC to provide Bluetooth

connectivity.

The InfoStation application is a multithreaded

application, with two threads waiting for Bluetooth

connections. The first thread receives messages users

wish to send and another thread pushes messages to

the users‟ mobile device when it periodically

connects to check for messages. In order to

communicate with the MessageRedirector, two

message queues are created for each InfoStation in

the system (c.f. Figure 4).

5.2.2. MessageRedirector

For this project, the MessageRedirector also

runs on basic PC hardware and is implemented in

Java. In addition to the architecture and requirements

listed in Section 4.5, the MessageRedirector

initialises some of the general infrastructural

components such as the Java Message Queues which

are used by the InfoStations to communicate with the

MessageRedirector.

Intelligent Assistant

The ‟Intelligent Assistant‟ is the “brains” of the

MessageRedirector. It is the module within the

MessageRedirector which parses the message

received from an InfoStation, decodes the message

receiver‟s address and decides what format/device

belonging to that user should receive the message.

Each message received by the Message Redirector

is parsed to decode the sender‟s and recipient‟s ad-

dresses as well as the message payload.

Message Dispatcher

Given that we have a range of message

formats (and possibly more in the future), we wish to

have an extensible way of sending messages once we

know the format they are to be sent in. For this

reason, the component in the MessageRedirector that

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 296
Volume 1, Issue 4, December 2010

processes and routes the messages is implemented

using the Factory software pattern [EGV95]. A

generic MsgDispatcher class is subclassed by the

specific dispatcher implementation for each message

type (e.g. BluetoothMsgDispatcher,

EmailMsgDispatcher, etc.). When the Intelligent

Assistant returns the recipient‟s contact address, it

also informs the MessageRedirector of the address

type and the message payload is input to the Message

Dispatcher class of that type.

Location Register

As described in Section 4.5.4, the Location

Register is a module within the MessageRedirector

which keeps track of the InfoStation to which a user‟s

mobile device is currently connected. Each time a

message is received by the MessageRedirector from

an InfoStation, the MessageRedirector calls the

setUserLocation method in the Location Register

with the sender‟s details and information on the

location of the InfoStation to which the sender is

connected. The Location Register stores this in an in-

memory HashMap so that the MessageRedirector can

later find out what InfoStation to send a message to

in order for the InfoStation to push it to the user‟s

mobile device.

If a mobile device has not been in contact with an

InfoStation within the previous two minutes, it is

deemed to be out of range and the entry is considered

dormant in the Location Register. However, it is not

evicted from the cache so that a record is kept of a

user‟s last known location. Instead, any requests to

the Location Register for that user via the

isUserConnected API routine return an „out of range‟

error until contact is made by the device again.

Naturally, a support application to provide

selflearning, smart userlocation management could

be developed which would be campus- and

userspecific. For instance knowing that certain users

can be within range of specific InfoStations (e.g.

restaurants, meeting rooms, etc.) for extended periods

of time (greater than two minutes) would allow the

Intelligent Assistant to correlate a location returned

by the Location Register with a list of delivery

preferences (controlled by the user) for specific

locations and to choose a delivery method based on

the user‟s preferences (with the user having to

explicitly change their address preferences when they

entered the area).

6. Conclusions

This paper has described the realisation of an

Intelligent Messaging Service in an InfoStation based

University Network along with a detailed explanation

of the underlying components which make up the

system. A functional messaging system was

developed consisting of all the necessary components

to allow end-to-end message delivery including the

mobile device application, InfoStations, central

processing unit as well as the web infrastructure to

manage the users‟ profile and contact information.

The sys-tem was implemented within a single

building, rather than campus wide, but we were

successful in sending messages between mobile

devices as well as to external messaging systems (e.g.

to email servers hosted on the Internet). Delivery

times were measured as being comparable with

existing formats (e.g. an email between two users)

which demonstrated that inserting an Intelligent

Assistant into the communication‟s critical path and

performing delivery decisions based on a user‟s

location was feasible.

Future work includes extending the number of

message formats supported, implementing Wi-Fi

connectivity support on both application running on

the mobile devices (MobileApp) as well as the

InfoStation, improving the interaction with standard

applications provided by the phone platforms (e.g.

augmenting the standard contact list to include the

address de-tails for the unified messaging system)

and adding a billing solution for the message formats

which incur a charge when being sent. Also an

important augmentation of the Location Register

support for the Message Redirector would be the

development of self-learning smart location

management functionality.

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 297
Volume 1, Issue 4, December 2010

References

1. [AMH+99] I.F. Akyildiz, J. McNair, J.S.M. Ho,

H. Uzunalioglu, and W. Wang. Mobility

Management in Next-Generation Wireless

Systems, 1999.

2. [Bar02] Declan Barber. Globalcom: a unified

messaging system using synchronous and

asynchronous forms. In PPPJ ’02/IRE ’02:

Proceedings of the inaugural conference on the

Principles and Practice of programming, 2002,

pages 141–144, Maynooth, County Kildare,

Ireland, Ireland, 2002. National University

of Ireland.

3. [BB95] Ajay V. Bakre and B. R. Badrinath.

Handoff and systems support for indirect tcp/ip.

In MLICS ’95: Proceedings of the 2nd

Symposium on Mobile and Location Independent

Computing, pages 11–24, Berkeley, CA, USA,

1995. USENIX Association.

4. [CHJ+03] Yih-Farn Chen, Huale Huang, R. Jana,

T. Jim, M. Hiltunen, S. John, S. Jora, R.

Muthumanickam, and Bin Wei. Immobile ee: an

enterprise mobile service platform. Wirel. Netw.,

9(4):283–297, 2003.

5. [EGV95] Ralph Johnson Erich Gamma, Richard

Helm and John Vlissides. Design patterns:

elements of reusable object-oriented software.

Addison-Wesley Professional, 1995.

6. [ETS95] ETSI. ETSI GSM Technical

Specification 04.22, 1995.

7. [ETS98] ETSI. SMS specification: ETSI TS 100

901 (GSM 03.40 version 7.3.0 Release 1998),

1998.

8. [Faj98] R. Fajman. RFC 2298 - An xtensible

Message Format for Message Disposition

Notifications, 1998.

9. [HBN03] Paul Healy, Declan Barber, and Brian

Nolan. Developing unified messaging system

apps in java. In PPPJ ’03: Proceedings of the

2nd international conference on Principles and

practice of program ming in Java, pages 137–

138, New York, NY, USA, 2003. Computer

Science Press, Inc.

10. [Hos02] Ashima Hosalkar. Building Mobile

Applications with J2EE, J2EE-J2ME and J2EE

Extended Application Servers. Pace University,

White Plains, NY, USA, 2002.

11. [Iva06] Ivan Ganchev, Stanimir Stojanov,

Mairtin O‟Droma and Damien Meere. An

InfoStation-Based University Campus System

for the Provision of mLearning Services. In

ICALT ’06: Proceedings of the Sixth IEEE

International Conference on Advanced Learning

Technologies, pages 195–199, Washington, DC,

USA, 2006. IEEE Computer Society.

12. [Iva07] Ivan Ganchev, Stanimir Stojanov,

Mairtin O‟Droma and Damien Meere. An

InfoStation-Based University Campus System

Supporting Intelligent Mobile Services. In

Journal of Computers, volume 3, pages 21–33.

Academy Publisher, 2007.

13. [Jon04] Jonna H¨akkil¨a and Jani ¨antyj¨arvi.

User experiences on combining location

sensitive mobile phone applications and

multimedia messaging. In MUM ’04:

Proceedings of the 3rd international conference

on Mobile and ubiquitous multimedia, pages

179–185, New York, NY, USA, 2004. ACM

Press.

14. [JPB05] Younghee Jung, Per Persson, and Jan

Blom. Dede: design and evaluation of a context-

enhanced mobile messaging System. In CHI ’05:

Proceedings of the SIGCHI conference on

Human factors in computing systems, pages

351–360, New York, NY, USA, 2005. ACM

Press.

15. [Mat06] Matthias Siebert, Ivan Ganchev,

Mairtin O‟Droma, F. Bader, H. Chaouchi, I.

Armuelles, I. Demeure and Fintan McEvoy.A

4G generic ANWIRE system and service

integration architecture. SIGMOBILE Mob.

Comput. Commun. Rev.,10(1):13–30, 2006.

16. [RCCC01] Chung-Hwa Herman Rao, Yih Fam

Robin Chen, Ming-Feng Chen, and Di-Fa

Chang. iMobile: a proxybased platform for

mobile services. In WMI ’01: Proceedings of the

first workshop on Wireless mobile internet,

pages 3–10, New York, NY, USA, 2001. ACM

Press.

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 298
Volume 1, Issue 4, December 2010

17. [Res01] P. Resnick. RFC 2822 - Internet

Message Format, 2001.

18. [Sco96] John Scourias. Overview: The global

system for mobile communications, 1996.

19. [TWB96] Mark S. Taylor, William Waung, and

Mohsen Banan. Internetwork Mobility the CDPD

Approach, 1996.

